
PROOF BY MATHEMATICAL INDUCTION

Most proofs by mathematical induction share several parts that have the same structure.

To prove a statement is true for all integers 1n (*):

1. Basis step: Prove the statement is true when 1n (*).

2. Inductive step: [a] Assume the statement is true for some particular but arbitrary integer 1k (*)
(ie. when kn  ).

It is helpful to explicitly write down the statement when n = k,
so you know what you’re allowed to assume and use.

[b] Prove the statement is true when 1 kn .

It is helpful to explicitly write down the statement when n = k + 1,
so you know what you’re trying to prove.

The proof in part 2[b] is different for each proof.
A frequent pattern of proving that part is to try to

[i] rewrite a complex expression from step 2[b] so that the similar expression from step 2[a] appears
[ii] use the statement from 2[a] to make a statement using a slightly simpler expression
[iii] rewrite the slightly simpler expression so that the simpler expression from step 2[b] appears

(*) To prove a statement is true for all integers n  some other number,
replace these occurrences of 1 with that other number.

For each example below,

1. What are you supposed to prove is true in the basis step ?

2. [a] What are you supposed to assume is true in the inductive step ?

[b] What are you supposed to prove is true in the inductive step ?
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PROOF BY MATHEMATICAL INDUCTION


Most proofs by mathematical induction share several parts that have the same structure.

To prove a statement is true for all integers 
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It is helpful to explicitly write down the statement when n = k,

so you know what you’re allowed to assume and use.

[b]
Prove the statement is true when 
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It is helpful to explicitly write down the statement when n = k + 1,

so you know what you’re trying to prove.

The proof in part 2[b] is different for each proof.

A frequent pattern of proving that part is to try to

[i]
rewrite a complex expression from step 2[b] so that the similar expression from step 2[a] appears


[ii]
use the statement from 2[a] to make a statement using a slightly simpler expression

[iii]
rewrite the slightly simpler expression so that the simpler expression from step 2[b] appears


(*)
To prove a statement is true for all integers n ( some other number,


replace these occurrences of 1 with that other number.


For each example below,


1.
What are you supposed to prove is true in the basis step ?


2.
[a]
What are you supposed to assume is true in the inductive step ?



[b]
What are you supposed to prove is true in the inductive step ?


Example 1
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Example 3
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Example 4
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Example 5
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